Alumni

  Name Ph. D. Major Fields
Lusheng Wang City University of Hong Kong Boltzmann Equation and Kinetic Related Models
Byungsoo Moon University of Texas at Arlington Partial differential equations,Integrable nonlinear wave equations
Koji Tasaka Kyushu University Number Theory, Modular forms,Multiple zeta values
Emre Esenturk University of Pittsburgh Partial differential equations
Donggeon Yhee Seoul National University Number Theory, Elliptic Curves
Ho Yun Jung KAIST Number Theory, Hyperbolic geometry
Michal Kraus Charles University in Prague Functional analysis
Heejung Kim Brandeis University Low-Dimensional Topology
Hyung Jun Choi POSTECH Partial differential equations, Numerical analysis
Sunghoon Kim Seoul National University Degenerated elliptic and parabolic equations
Haggai Tene University of Bonn Algebraic topology
Byung Hee An KAIST Braid Theory
Boguk Kim MIT Mathematical Modeling
Dong Uk Lee University of Pennsylvania Arithmetic algebraic geometry
Daniele Garrisi University of Pisa Nonlinear PDE
Yoshio Sano Kyoto University Matroid Theory, Graph Theory
Jae Cheon Joo POSTECH 준 복소기하학
Kentaro Ihara Kyushu Univ. Number Theory
Minjeong Park Seoul National University Time series analysis
Ju Myung Kim KAIST Functional Analysis
Greg Markowsky City University of Now York Probability
Ya Ryong Heo POSTECH Braid Theory
Torsten Ehrhardt Technische Universiät Chemnitz, Germany Mathematical Physics, Operator, Functional Analysis
Toshifumi Tanaka Kyushu Univ. Geometric Topology
Gabjin Oh POSTECH Mathematical finance
Jungwook Lee Seoul National University Inverse problem
Hyun Suk Park Hallym Univ. Applied Probability
Jongwoo Kim POSTECH Stochastic Processes
DoYong Kwon Seoul National University Symbolic Dynamics & Number Theory
Dongsoo Shin Seoul National University Low-dimensional algebraic varieties & symplectic 4-manifold
DongYeol Oh POSTECH Commutative Ring Theory, Coding Theory
Young Min Lee Seoul National University Number Theory
Han Ju Lee KAIST Functional Analysis -
SungWon Cho Univ. of Minnesota Partial Differential Equation -
Keiichi Gunji Univ. of Tokyo Siegel modular formsof low weights -
JongYoon Hyun POSTECH Algebraic Coding Theory